
Digital Object Identifier (DOI) 10.1140/epjc/s2002-01068-3
Eur. Phys. J. C 26, 445–455 (2003) THE EUROPEAN

PHYSICAL JOURNAL C

World-line techniques for resumming gluon radiative corrections
at the cross-section level
A.I. Karanikas1,a, C.N. Ktorides1,b, N.G. Stefanis2,c

1 University of Athens, Department of Physics, Nuclear and Particle Physics Section, Panepistimiopolis, 15771 Athens, Greece
2 Institut für Theoretische Physik II, Ruhr-Universität Bochum, 44780 Bochum, Germany

Received: 10 June 2002 /
Published online: 31 October 2002 – c© Springer-Verlag / Società Italiana di Fisica 2002

Abstract. We employ the Polyakov world-line path-integral version of QCD to identify and resum at leading
perturbative order enhanced radiative gluon contributions to the Drell–Yan type (qq̄ pair annihilation)
cross-sections. We emphasize that this is the first time that world-line techniques are applied to cross-sec-
tion calculations.

1 Introduction

The path, rather than the functional, integral casting of
a relativistic quantum system has a long history, going
back to Fock [1], Feynman [2], and Schwinger [3]. In the
course of time it has received substantial contributions
from several authors (see, e.g., [4–9] to name just a few).
However, it was not realized until recent developments in
string theory in the context of effective actions (see [10–
12], and [13] for a recent review) that first-quantization
methodologies in high energy theory can compete with
second-quantization ones. Of particular interest to us here
is the Polyakov world-line path integral [14], which em-
ploys world-line paths weighted by a spin factor with the
aim to describe the propagation of particle-like entities in
Euclidean space-time. In fact, Polyakov’s intention was
to use this construction as a simple prototype for dis-
cussing string quantization. Hence, for his purposes it was
sufficient to consider the simple case of a free, spin-1/2
particle-like entity. Motivated by this, two of the present
authors [15] explored the possibility of transcribing the
matter, spin-1/2, field sector of a gauge theory into a
Polyakov world-line path-integral form. In these works, it
was established, for both Abelian and non-Abelian gauge
systems, that this is, indeed, possible with the spin factor
making explicitly its entrance in the resulting expression,
while the dynamics enters through a Wilson line (loop)
factor defined on each given path.

Due to the Gaussian character (with respect to the
Dirac fields) of the fermionic sector of physically relevant
gauge-field theories, the aforementioned transcription into
a Polyakov world-line path integral refers to the full sys-
tem. This means that one’s way of thinking should be
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readjusted to the idea that the second-quantization for-
malism, associated with the field theoretical mode of de-
scription, can be replaced by a new, but equivalent, struc-
ture that is based on space-time path integrals. The quan-
tities of central importance defined on these paths are then
the spin factor and the Wilson line (loop), the latter be-
coming an indigenous element of the theory, as it enters
at the level of its definition.

In a number of papers – see, for instance, [6,15–17]
– we have employed the path-integral casting of either
QED or QCD, to study infra-red (IR) factorization and
the ensuing behavior of Green’s functions and amplitudes
in a resummed perturbative context at the two-, three-
and four-point function level. Roughly speaking, the afore-
mentioned isolation of the long-distance physics in these
theories emerges through the ability to identify a special
set of space-time paths having a very simple geometri-
cal profile which is shared, in a restricted (but directly
relevant to the physics of the process) neighborhood, by
each and every contour entering the path integral. In a
Euclidean space-time context, the single (multiplicative)
renormalization constant, carried by this special family of
paths, automatically factorizes out [18] their contribution
to amplitudes/cross-sections, given that it also accompa-
nies the rest of the paths. The more complex geometrical
structure of the latter, simply implicates additional ul-
traviolet (UV) singularities which can be absorbed into
conventional wave-function and coupling-constant renor-
malizations. This clean, geometrically based, argument,
which singularly underlines the world-line description, will
be further elucidated through the main exposition in the
sections to follow. Minkowski space subtleties, associated
with the light cone, which are encountered in the particu-
lar processes under study, will require separate attention.

Perhaps the most important accomplishment of this
paper is that it extends world-line techniques to cross-sec-
tion calculations for the first time. To be sure, the situ-
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ation presently considered refers to the hypothetical sit-
uation where the scattering process involves quarks and
associated gluon radiation without reference to hadrons.
It does, nevertheless, fall within the spirit that marks our
approach to IR issues in QCD [16,17]: Once off-mass shell
IR protection is employed – by an amount that exceeds
ΛQCD – one actually tests how far one can go by remain-
ing strictly within the confines of QCD before attempting
to make contact with real hadrons. Granted the opposite
route, from hadrons to quarks and gluons, via the use of
quantities like structure/fragmentation functions, the em-
ployment of tools such as the operator product expansion,
etc., constitutes a more realistic procedure for investigat-
ing the same physical problems. On the other hand, an ef-
fort which bases its considerations on a fundamental the-
oretical framework in order to arrive at “cross-sections”
does present merits and interests of its own, an exam-
ple of which will be presented below. In this context, the
philosophy underlying our approach to the IR domain of
QCD is closer in spirit to the one articulated by Ciafaloni
in [19], the only difference being that we shall keep a more
pragmatic (and less ambitious) course by focusing our at-
tention on cross-section expressions.

Letting these comments suffice for an introductory ex-
position, we now proceed to display the organization of the
paper, which is as follows. In the next section, we exhibit
the world-line expression for the full fermionic Green’s
function and subsequently employ it to construct corre-
sponding expressions for DY-type QCD amplitudes/cross-
sections. Section 3 furnishes, with the aid of the appendix,
our basic calculations associated with one virtual-gluon
exchanges for the specified special set of trajectories. The
resulting expression explicitly reveals the threshold en-
hancement factor, whereas the task of virtual-gluon re-
summation is performed, via the aid of the renormaliza-
tion group, in Sect. 4. Section 5 deals with the resumma-
tion of contributions from real-gluon emission. Finally, in
the last section, we further discuss our results and present
our conclusions.

2 Basic world-line expressions
for amplitudes and cross-sections

Consider the full two-point (fermionic) Green’s function
in the presence of an external gluonic field. The Polyakov
path-integral expression, in Euclidean space-time,

iGij(x, y|A)
=
∫ ∞

0
dT e−Tm2

∫
x(0)=x

x(T )=y

Dx(t)
[
m− 1

2
γ · ẋ(T )

]

× P exp

(
i
4

∫ T

0
dtσµνωµν

)
(1)

× exp

[
−1
4

∫ T

0
dtẋ2(t)

]
P exp

[
ig
∫ T

0
dtẋ ·A(x(t))

]
ij

,

displays the basic world-line features pertaining to this
quantity. Here, and below, P denotes the usual path or-

dering of the integrals. The first thing to point out is that
a given path of the matter-field quantum, starting at x
and ending at y between respective “proper-time” values
0 and T , also enters a Wilson line factor. The latter, be-
ing the sole carrier of the dynamics, separates itself from
the rest of the factors in the path integral which are asso-
ciated with geometrical properties of paths traversed by
spin-1/2 particle entities. The most notable such quantity
is the so-called spin factor [14], P exp

[
(i/4)

∫ T

0 dtσ · ω
]
,

where ωµν = (T/2)(ẍµẋν − ẋµẍν), accounting, in a geo-
metrical way, for the spin-1/2 nature of the propagating
particle. Accordingly, our perturbative expansions should
be perceived of in terms of (Euclidean) space-time paths
involving a “proper time” parameter and not in terms of
Feynman diagrams. As it turns out [20], in the pertur-
bative context, the structure of matter particle contours,
entering the path integral, is determined by the points
where a momentum change takes place, i.e., points where
a gauge-field line (real or virtual) attaches itself on the
(fermionic) matter-field path. The almost everywhere non-
differentiability of these contours is residing precisely at
these points. A major effort, in this paper, will be de-
voted to the extension of the world-line formalism to ex-
pressions for cross-sections corresponding to the particular
processes of qq̄ annihilation.

From the world-line point of view, the process we in-
tend to study involves fermionic matter particle (quark)
paths that commence at x and end at y, being forced to
pass through an intermediate point z, where a momen-
tum transfer Q takes place. This means that the Green’s
(vertex-type) function we shall be dealing with has the
following form (Γµ denotes some Clifford–Dirac algebra
element)

Vµ,ij(y, z, x|A) = Gik(y, z|A)ΓµGkj(z, x|A) (2)

=
∫ ∞

0
dT e−Tm2

∫ T

0
ds
∫

x(0)=x

x(T )=y

Dx(t)δ (x(s)− z)Gµ (ẋ, s)

×exp

[
−1
4

∫ T

0
dtẋ2(t)

]
P exp

[
ig
∫ T

0
dtẋ(t) ·A(x(t))

]
ij

,

where

Gµ (ẋ, s) ≡
[
m− 1

2
γ · ẋ(T )

]
P exp

(
i
4

∫ T

s

dtσ · ω
)

× Γµ

[
m− 1

2
γ · ẋ(s)

]

× P exp
(
i
4

∫ s

0
dtσ · ω

)
. (3)

It is especially important to realize that in our approach
off-shellness is naturally parameterized in terms of the fi-
nite size of the matter particle contours and realistically
accounts for the fact that quarks reside inside a hadron
(m can be viewed as an effective quark mass).

Going over to momentum space, we write

Ṽµ,ij(p, p′|z|A)
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=
∫ ∞

0
dT e−Tm2

∫ T

0
ds
∫

Dx(t)δ (x(s)− z)Gµ (ẋ, s)

× exp

[
−1
4

∫ T

0
dtẋ2(t) + ip · x(0) + ip′ · x(T )

]

× P exp

[
ig
∫ T

0
dtẋ(t) ·A(x(t))

]
ij

≡
∑
Cz

Γ̃µ[Cz]P exp
[
ig
∫

Cz

dx ·A(x)
]

ij

, (4)

where Cz denotes a generic path forced to pass through
point z, at which the momentum Q is imparted.

For a process of the type q+ q̄ → lepton pair + X the
“amplitude” expression reads

∆µ,ij = v̄(p′, s′)(−iγ · p′ +m)Ṽµ,ij(iγ · p+m)u(p, s)

≡
∑
Cz

Ĩµ,p′p[Cz]P exp
[
ig
∫

Cz

dx ·A(x)
]

ij

, (5)

with the second, comprehensive, expression to be under-
stood having recourse to (4).

For the cross-section, we need to employ the following
quantity, which we implicitly display in Minkowski space-
time after straightforward adjustments:

∆†
µ∆ν =

∑
C̄z′

∑
Cz

Ĩ†
µ,p′p[C̄

z′
]Ĩν,p′p[Cz]

× Tr
{
P̄ exp

[
ig
∫

C̄z′
d̄x

ρ
Aρ(x̄)

]

× P exp
[
−ig

∫
Cz

dxσAσ(x)
]}

, (6)

where P̄ denotes anti-path ordering. Even though not ex-
plicitly displayed, the cross-section acquires a path-
integral form, which has the following characteristics.
(1) Paths Cz and C̄z′

are forced to pass through points z
and z′, respectively, where the momentum transfer occurs
(see Fig. 1). The distance b ≡ |z − z′| serves as a measure
of how far apart the two conjugate contours can venture
away from each other and will be referred to as the impact
parameter.
(2) The traversal of C̄z′

is made in the opposite sense
relative to Cz. If we now let the two paths join at one end
by using translational invariance, while we allow the other
two ends of the contour to close at infinity, then we obtain
the formation of a Wilson loop.
(3) Under these circumstances, the Wilson loop formation
guarantees the gauge invariance of the expression for the
cross-section.

On the other hand, by keeping the contour lengths
finite, but very large, thereby placing the quarks off-mass-
shell, gauge invariance will still continue to hold to the
order of approximation we employ in our computations,
given that the off-mass-shellness serves at the same time
as an IR cutoff.

Up to this point our considerations have been centered
around the geometrical profile of the paths entering the

x(0)

C C

x(T´)
x(T)

x(s´) = z´ z = x(s)

x(0)

Fig. 1. Illustration of two conjugate contours C and C̄ entering
the world-line path integral, “talking” to each other at points z
and z′, where the momentum transfer for the physical process
takes place. The distance |z − z′| is referred to as the impact
parameter

world-line casting of QCD, the main conclusion being that,
for the process considered, the relevant contours entering
the path integral are marked by a characteristic point,
where a momentum transfer is imparted and that they
are open for the amplitude and closed (or almost so) for
the cross-section. Armed with this information, we now
turn our attention to the Wilson factor which contains
all the dynamics of the given process. The obvious task
in front of us is to assess its implications once the gauge
fields are quantized, i.e., once the Wilson factor is inserted
into a functional integral weighted by the exponential of
the Yang–Mills action. We display the quantity of interest
as follows

W =
〈
Tr
{
P̄ exp

[
ig
∫

C̄z′
d̄xµ

Aµ(x̄)
]}

A

×
{
P exp

[
−ig

∫
Cz

dxνAν(x)
]}

A

〉

≡ 〈Tr(U†(C̄z′
)U(Cz))〉. (7)

In the above expression, {· · ·}A signifies the expectation
value with respect to the gauge-field functional integral
which, in this work, will be considered in the context of
perturbation theory. Note in the same context that a vir-
tual gluon attaching itself with both ends to the fermionic
world-line, entering the amplitude, corresponds to a cor-
relator between a pair of gauge fields originating from the
expansion of the Wilson factor. On the other hand, for
an emitted “real” gluon from the fermionic line, the cor-
relator is between an “external” and a Wilson line gauge
field1. The overall situation is depicted in Fig. 2. At the
cross-section level, now, “real” gluons are integrated with
respect to “propagators” linking together the two conju-
gate contours, while their polarization vectors are summed
over (cut propagators). This is precisely what 〈· · ·〉 signi-

1 One will, of course, also encounter correlators that involve
gauge fields from the non-linear terms of the Yang–Mills action.
These, however, do not enter the leading logarithmic consider-
ations relevant for our considerations
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fies in the last equation, as it brackets both Wilson line
factors.

This marks a crucial difference to conventional ap-
proaches (for example, [21–23]), wherein the Drell–Yan
process is discussed in a context where IR factorization is
based on the eikonal approximation for soft amplitudes.
Wilson loop expectation values, entering this scheme, are
evaluated along contours corresponding to classical trajec-
tories – along with a segment which lies on the light cone,
introduced in order to secure gauge invariance. In our case,
by contrast, Wilson contours are built in at a foundational
level, being themselves an integral part of the description
of the full QCD. Accordingly, factorization properties for
us are integrally connected with the renormalization prop-
erties of Wilson loops studied in the more general context
of [18]. In the light of the above remarks, let us proceed to
display the first-order (in perturbation theory) expression
for W, which receives contributions from virtual gluons,
viz., those attached at both ends of either the world-line
contour Cz or C̄z′

, as well as from “real” gluons linking
these contours to each other (cf. Fig. 2). This expression
reads

W(2) = TrI − g2CF

∫ T

0
dt1
∫ T

0
dt2θ (t2 − t1)

× ẋµ (t2) ẋν (t1)Dµν (x(t2)− x(t1))

− g2CF

∫ T ′

0
dt′1

∫ T ′

0
dt′2θ (t

′
1 − t′2) ˙̄x

µ (t′2) ˙̄x
ν (t′1)

× D̄µν (x̄(t′2)− x̄(t′1))

− g2CF

∫ T

0
dt
∫ T ′

0
dt′ẋ(t) · ˙̄x (t′)Dcut (x(t)− x̄(t))

+ O (g4) . (8)

It becomes obvious from their structure that the first two
non-trivial terms correspond to virtual-gluon contribu-
tions – one per conjugate branch –, while the third one
is associated with “real” gluon emission. Finally, concern-
ing the gluon propagators entering the above equation,
we shall be employing their Feynman-gauge form without
loss of generality due to gauge invariance. In particular we
have, in D dimensions,

Dµν(x) = −igµνµ
4−D

∫
dDk

(2π)D
e−ik·x

k2 + i0+

= gµν
1
4π2

(−πµ2)(4−D)/2 Γ (D/2− 1)
(x2 − i0+)(D/2)−1 , (9)

whereas

Dcut(x) = µ4−D

∫
dDq

(2π)D
2πδ(q2)θ(q0)e−iq·x (10)

=
1
4π2

(−πµ2)(4−D)/2 Γ (D/2− 1)

[(x2
0 − i0+)2 − x2](D/2)−1 .

From here on and for the sake of notational simplicity, we
shall simply write D(x) instead of Dcut(x).

x(0) x(0)

x(s´) = z´ z = x(s)

C

x(T´) x(T)

C

Fig. 2. Virtual gluon radiative corrections of various sorts and
“real” gluon lines with their ends attached on each of the two
depicted contours at the cross-section level

As already established by other methods, the pertur-
bative expansion (8) is plagued by large threshold loga-
rithms leading to the need for factorization and resumma-
tion. This is precisely the task we are about to undertake
within our framework.

3 First-order virtual-gluon corrections
in the vicinities of points z and z′

The space-time mode of description of the Polyakov world-
line formalism puts us into the position to promote the
following argument: The point z (or z′), where the mo-
mentum transfer Q is imparted, marks the presence of a
neighborhood around it, no matter how infinitesimal in
size this might be, whose geometrical structure is shared
by all fermionic paths entering the path integral. Specifi-
cally, there will be a derailment (cusp formation), whose
opening angle will be fixed unambiguously, since it is de-
termined by the momentum transfer. It follows that the
contributions to the amplitude and cross-section from the
immediate vicinities of each of the two cusps is a com-
mon feature of all contours and eventually factorizes. In
this section we shall determine the first-order perturbative
term corresponding exactly to this factor.

Consider now the neighborhood of point z on the con-
tour Cz. Expanding around this point, we write

xµ(t) = xµ(s) + (t− s)ẋµ(s± 0) + . . . (11)

with vµ = ẋµ(s − 0) and v′µ = ẋµ(s + 0) being entrance
and exit four-velocities, respectively, with respect to z.

Adjusting our notation by re-parameterizing the con-
tour so that the zero value is assigned to point z, the
relevant quantity to compute, to first perturbative order,
becomes

U
(2)
C,S = 1 (12)

− g2CF

[∫ 0

−σ

dt1
∫ 0

−σ

dt2θ (t2 − t1) vµvνDµν (vt2 − vt1)

+
∫ σ

0
dt1
∫ σ

0
dt2θ (t2 − t1) + v′µv′νDµν (v′t2 − v′t1)
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+
∫ −σ

0
dt1
∫ σ

0
dt2θ (t2 − t1) v′µvνDµν (v′t2 − vt1)

]
.

It is clear that the above expression corresponds to the
first term in (8), which monitors a virtual-gluon exchange
occurring on contour C.

From the above considerations it follows that the main
contribution to each double integral comes from the com-
mon limit t1, t2 → 0. Suppose now, the other limit is to be
determined by demanding that its contribution to the inte-
grals is of vanishing importance. Then, such a requirement
automatically isolates those contours, whose only signifi-
cant geometrical characteristic is that the four-velocities
to approach and depart from point z are fixed, denoted
by vµ and v′µ respectively. The same, of course, happens
for point z′, but in the reverse order. This justifies the
subscript S in UC,S, which stands for “smooth”. Let us
also observe that the omitted terms in (12) will contain
negative powers of σ, whose dimension in the denominator
is (mass)2. Neglecting their presence means that σ should
be very large in magnitude and hence it should be related
to an IR cutoff, i.e., σ � λ−2, λ > ΛQCD.

In Euclidean space-time, now, every path will share the
geometrical structure we are focusing on in some neighbor-
hood of the point z or (z′), no matter how close to these
points one has to come. At the same time, the UV singu-
larities, exhibited by this restricted set of paths, will entail
expressions that solely depend on the two four-velocities
and the opening angle. Paths of more complex geometrical
structure, on the other hand, will certainly exhibit these
UV singularities plus additional ones2. It follows that – in
Euclidean space-time at least – the restricted set of tra-
jectories, by exclusively carrying the corresponding (mul-
tiplicative) renormalization constant, factorizes from the
rest of the expression for the amplitude and/or cross-sec-
tion. In a Minkowski space-time context, which will be
considered next, we should anticipate the existence of ad-
ditional contributions to (12), due to the light-cone struc-
ture that cannot be assigned to each and every contour
and, therefore, cannot be factorized. Let us, then, go over
to Minkowski space-time, where we have two distinct pos-
sibilities for defining an infinitesimally small neighborhood
around z. The first one, to be labelled (a), reads

(x− x′)2 = O(ε2), with vµ � v′
µ, for all µ, (13)

where ε (≤ Q−1) is a small length scale. The second al-
ternative, to be labelled (b), can be typically represented
by

(x− x′)2 = O(ε2) with |v − v′|2 = O(λ2)
but (v+ − v′

+) � O(Q)

and (v− − v′
−) � O

(
λ2

Q

)
⇒ (v+ − v′

+)(v− − v′
−) = O(λ2) (14)

2 Actually, the standard UV singularities of perturbative
field theories associated with β-functions, coupling-constant
and wave-function renormalization, pertain to almost every-
where non-differentiable paths

that is equivalently effected via the condition v+ � v′
+,

v− � v′
−. All in all, there are four different configurations:

+ ↔ − and prime ↔ no-prime entering this case.
We denote case (a) as “uniformly soft”, given that the

considered gluon exchanges take place in a neighborhood
whose smallness pertains to all directions. Case (b), on the
other hand, will be referred to as “jet” since gluon emission
occurs under circumstances, where entrance and exit four-
velocities differ from each other significantly along one or
the other of the light-cone directions. Particular implica-
tions stemming from this, purely Minkowskian, case as far
as the factorization issue is concerned, will be considered
later on.

Let us commence our calculations by taking up the first
O(g2) term entering the right hand side of (12). Since this
only involves the branch of the contour Cz entering point
z, we obtain the same expression regardless of whether or
not a uniformly soft or a jet configuration is being consid-
ered. It reads

I1 =
∫ 0

−σ

dt1
∫ 0

−σ

dt2θ (t2 − t1) vµvνDµν (vt2 − vt1)

= − 1
8π2

(−πµ2L2
1
)(4−D)/2

× Γ

(
D

2
− 1
)

1
D − 3

1
2−D/2

, (15)

where3 L1 = σ|v|. The second term has the same structure
as the first one (it involves the exiting branch of Cz) and
therefore produces a similar result:

I2 = − 1
8π2

(−πµ2L2
2
)(4−D)/2

× Γ

(
D

2
− 1
)

1
D − 3

1
2−D/2

, (16)

with L2 = σ|v′|.
A couple of remarks are in order at this point. First,

even though the length scales L1 and L2 are both large,
being proportional to σ, they will be of the same order of
magnitude for case (a), whereas for case (b), one scale will
be negligible in comparison with the other. Accordingly,
the total expression to the amplitude for the uniformly soft
contribution will be twice as large as that of the jet-like
one. This having been said, we shall denote the dominant
length scale by L (� L1 and/or L2), when it enters our
final expressions, and set it equal to 1/λ, recognizing that
it is of the same order as the IR cutoff. Second, in order
to avoid the double counting resulting from the fact that
each branch has been “cut-off” at distance L away from
z, where gluon emission occurring at the endpoints will
be offset by a similar one, but opposite in sign, from that
portion of the contour that continues to stretch out to
infinity, the final expressions for the end-point singularities
should be multiplied by a factor of 1/2. Equivalently, one
might think of this compensation as actually identifying
the missing energy of the gluon emission at the extremities

3 Note that v has the dimension of mass as our “time” pa-
rameter σ has the dimension of (mass)−2
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of the path with the off-mass-shellness. In fact, this is what
we have been implying all along when claiming that finite
contours signify off-mass-shellness.

Turning our attention to the contribution resulting
from a virtual-gluon exchange from the entrance to the
exit branch, with respect to z, we consider the quantity

I3 =
∫ 0

−σ

dt1
∫ σ

0
dt2v′µvνDµν (v′t2 − vt1)

=
1
4π2

(−πµ2)(4−D)/2
Γ

(
D

2
− 1
)
v · v′ (17)

×
∫ σ

0
dt1
∫ σ

0
dt2
(
t21v

2 + t22v
′2 + 2t1t2v · v′ − i0+

)1−(D/2)
.

For case (a) it assumes the form (recall that v · v′ is neg-
ative)

I
(a)
3 =

1
4π2

(
−πµ

2

λ2

)(4−D)/2

Γ

(
D

2
− 1
)
v · v′

|v||v′| (18)

×
∫ 1

0
dt1
∫ 1

0
dt2

(
t21 + t22 + 2t1t2

v · v′

|v||v′| − i0+

)1−(D/2)

.

As shown in the appendix, one then determines (γE is
Euler’s constant)

I
(a)
3 =

1
8π2 γ coth γ

1

2− D

2

+
1
8π2 γ coth γ ln

(
µ2

λ2 πe
2+γE

)
,

(19)
where cosh γ = w = −v · v′/(|v||v′|) ≥ 1.

In all of the above expressions, as well as in those that
will follow, we have ignored:
(i) all imaginary terms that will drop out when contribu-
tions (for virtual gluons) from the conjugate contour are
taken into account, and
(ii) finite, µ-independent terms that will cancel out when
real-gluon contributions to the cross-section are included.

Collecting all terms, we deduce, for the “uniformly
smooth” part,

I
(a)
1 + I

(a)
2 + I

(a)
3 =

1
8π2 (γ coth γ − 1)

1

2− D

2

(20)

+
1
8π2 (γ coth γ − 1) ln

(
µ2

λ2 πe
2+γE

)
.

Concerning the “jet” part of the computation, we only
need to consider I(b)

3 because4 the expression for I(b)
1 +I(b)

2

is simply one half of that of I(a)
1 + I

(a)
2 . A typical term

entering I(b)
3 (v− � v′

+) is

I
(b)
3 =

1
4π2

(−πµ2)(4−D)/2
Γ

(
D

2
− 1
)
v · v′ (21)

×
∫ σ

0
dt1
∫ σ

0
dt2
(
t21v

2 + 2t1t2v · v′ − i0+
)1−(D/2)

,

4 Recall the remark following (16)

whose computation suffices to furnish each of the other
three terms as well.

It is shown in the latter part of the appendix that one
obtains

I
(b)
3 =

1
16π2

1(
2− D

2

)2 +
1

16π2

1

2− D

2

ln
(
µ2

λ2 πe
γE

)

+
1

32π2 ln
2
(
µ2

λ2 πe
γE

)
+ const. (22)

It is duly observed that the singularity structure of the
above expression is γ-independent. In fact, the “jet” con-
figuration is a Minkowski space feature and is connected to
“gluon” emission in the + or the − light-cone coordinates
direction. This result is in accord with Wilson loop stud-
ies in Minkowski space, wherein the relevant contour lies
partly on the light cone [22]. Subtracting the pole terms in
the MS scheme, we arrive at the finite part of the overall
result. For the uniformly soft contribution, in particular,
we get

(I(a)
1 + I(a)

2 + I(a)
3 )fin =

1
8π2 (γ coth γ − 1) ln

(
µ2

λ̄2

)
, (23)

while the jet contribution reads

(I(b)
1 +I(b)

2 +4I(b)
3 )fin=

1
8π2 ln

2
(
µ2

λ̄2

)
− 1
16π2 ln

µ2

λ̄2
, (24)

where we have set λ̄2 ≡ 4λ2e−2γE . The above relation
takes into account all four different configurations con-
tributing to I(b)

3 .
Gathering all terms, we arrive at the following overall

result for the second-order contribution stemming from
contour Cz:

U
(2)
C,S = 1− αs

2π
CF

[
(γ coth γ − 1) ln

(
µ2

λ̄2

)
− 1

2
ln
(
µ2

λ̄2

)

+ ln2
(
µ2

λ̄2

)]
. (25)

A similar result is obtained also for contour C̄z′
.

Noting that γ coth γ = ln
(
Q2/m2

)
(for Q2 � m2),

with Q2 = (p + p′)2, we recognize that the well-known
perturbative enhancements occurring as Q2 → ∞ are as-
sociated with the eikonal-type trajectories upon which our
present calculations have been based. One, now, realizes
that these trajectories define threshold conditions, with re-
spect to the given momentum exchange Q, for the process
under consideration, since they leave no room for space-
time contour fluctuations. In the following section, we
shall treat the resummation of these enhanced contribu-
tions to leading logarithmic order. We shall, furthermore,
identify a correction factor associated with those terms in
(25) not involving the enhancement factor ln(Q2/m2).
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4 Resummation of enhanced contributions
from virtual gluons

The family of world-line paths to which the considera-
tions in the previous section refer was used in order to
deal with all (virtual) single-gluon exchanges, consistent
with the simple geometrical configuration of two constant
four-velocities making a fixed angle γ between them (in
Euclidean formulation). Among these gluons there will be
“hard” ones (upper limit Q) and “soft” ones (lower limit
set by λ̄). What is debited to the former and what to the
latter group of gluons is, of course, relative. It is precisely
the role of the renormalization scale µ, entering through
the need to face UV divergences arising even for the re-
stricted family of paths, to provide the dividing line. The
corresponding renormalization-group equation reflects the
fact that the scale µ is arbitrary and that physical results
do not depend on it. A straightforward application of this
fact will enable us to resum the enhanced, virtual-gluon
contribution to the amplitude in leading logarithmic or-
der, as well as to obtain a bona-fide correction term.

To bring the above discussion into a concrete form,
let us first consider a separation, good to order 1/Q2, of
the cusp contribution, which can be factorized from the
amplitude UC , entering (7), on the basis of what has been
determined so far. Hence, we write

UC = UC,cusp

(
Q2

m2 ,
µ2

λ̄2

)
ÛC

(
Q2

µ2 ,
µ2

λ̄2

)
+O

(
1
Q2

)
,

(26)
with

U
(2)
C,cusp = 1− αs

2π
CF (γ coth γ − 1) ln

(
µ2

λ̄2

)
, (27)

where we have normalized UC,cusp to unity for γ → 0. The
designation “cusp”, above, refers to that factor of the soft
sector, which recognizes the angle γ. The factor ÛC , on the
other hand, includes both: (i) soft contributions – related
to the dependence on the quantity µ2/λ̄2 – and (ii) hard
ones – depending on the quantity Q2/µ2.

It is convenient to take the logarithmic derivative of
(26) with respect to Q2:

d
d lnQ2 lnUC =

d
d lnQ2 lnUC,cusp +

d
d lnQ2 ln ÛC

+ O
(

1
Q2

)
. (28)

The µ-independence of physical results leads to the
renormalization-group equation whose ultimate justifica-
tion has to do with the multiplicative renormalization of
the soft (cusp-angle dependent) factor. Indeed, the latter
is detached from collinear emission and totally complies
with the Euclidean space-time properties of Wilson loops
for which the results of [18] fully apply. Specifically, we
write

d
d lnµ

d
d lnQ2 ln ÛC = − d

d lnµ
d

d lnQ2 lnUC,cusp

= Γcusp(αs), (29)

with Γcusp to be read off from (20)–(22) and (12):

Γcusp(αs) =
αs

π
CF +O(α2

s ). (30)

From the second leg of (29), one obtains

d
d lnQ2 lnUC,cusp = −

∫ µ2

λ̄2

dt
2t
Γcusp [αs(t)] , (31)

which, in turn, gives

d
d lnQ2 ln ÛC = −

∫ Q2

µ2

dt
2t
Γcusp [αs(t)] + Γ

[
αs(Q2)

]
,

(32)
where we have defined

1
2
Γ
[
αs(Q2)

] ≡ d
d lnQ2 ln ÛC

(
Q2

µ2 ,
µ2

λ̄2

)
µ2=Q2

. (33)

Combining the last three equations, we have

d
d lnQ2 lnUC = −

∫ Q2

λ̄2

dt
2t
Γcusp [αs(t)] +

1
2
Γ
[
αs(Q2)

]
,

(34)
where, in terms of lnUC , we write

1
2
Γ
[
αs(Q2)

] ≡ d
d lnQ2 lnUC |λ̄2=Q2 . (35)

Setting µ2 = Q2 in (26), we are led to the identification

1
2
Γ
[
αs(Q2)

]
=

d
d lnQ2 lnUC,cusp

(
Q2

m2 ,
Q2

λ̄2

)∣∣∣∣
λ̄2=Q2

+
d

d lnQ2 ln ÛC

(
1,
Q2

λ̄2

)∣∣∣∣∣
λ̄2=Q2

. (36)

To second order we have

Γ (2) [αs(Q2)
]
=

3
2
CF

π
αs(Q2) +O(α2

s ). (37)

Gathering our findings, we obtain our final, resummed re-
sult corresponding to the contour C. It reads

UC = exp

{
−
∫ Q2

λ̄2

dt
2t

[
ln
Q2

t
Γcusp(αs(t))− Γ (αs(t))

]}

× UC,0(αs(Q2)). (38)

One notes that the second (“correction”) term in the
square brackets is associated with collinear emission (cf.
(36)). Finally, the factor UC,0(αs(Q2)) represents input
from initial conditions at the QCD level. Clearly, the
conjugate-contour term U†(C̄z′

) can be treated in a com-
pletely analogous fashion.
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x(s´) = z´

v´

z = x(s)
v

CC

v

v´

Fig. 3. Neighborhoods of respective points on two conjugate
contours, where the momentum transfer takes place, and asso-
ciated four-velocities

5 Resummation of enhanced contributions
from real-gluon emission

We shall now turn our attention to real gluons and at-
tempt to factorize cross-section contributions from neigh-
borhoods around points z and z′. Note that this time we
have to deal with gluons which connect two “opposite”
neighborhoods while crossing the unitarity line (this sit-
uation is depicted in Fig. 3). The relevant scale promptly
entering our considerations is the impact parameter b =
z−z′, which must be eventually integrated over in order to
get the physically measurable cross-section. Naturally, the
short-distance cutoff in this integration will be provided
by the (length) scale 1/|Q|.

For the eikonal-type family of paths, and in first-order
perturbation theory, the relevant quantity on which our
quantitative considerations are to be based, i.e., the coun-
terpart of (12), is given by

U
(2)
CC̄,S = 1 + g2CF

[∫ 0

−σ

dt1
∫ 0

−σ

dt2v · v̄D (t1v − t2v̄ + b)

+
∫ σ

0
dt1
∫ σ

0
dt2v′ · v̄′D (t1v′ − t2v̄

′ + b)

+
∫ 0

−σ

dt1
∫ σ

0
dt2v · v̄′D (t1v − t2v̄

′ + b)

+
∫ σ

0
dt1
∫ 0

−σ

dt2v′ · v̄D (t1v′ − t2v̄ + b)
]
, (39)

where the bar denotes four-velocities for the conjugate
contour and the subscript cut is henceforth omitted.

To identify the leading behavior of U (2)
CC̄,S, with respect

to b, we shall consider first the situation corresponding
to b = 0. The subsequent emergence of UV divergences,
once handled through dimensional regularization, will in-
troduce a mass scale µ′ that will be bounded from below
by an IR cutoff λ and from above by the (mass) scale 1/b.
The resulting renormalization-group equation will facili-
tate the resummation of the leading terms, just as in the
virtual-gluon case.

Let us start with our quantitative considerations by
looking at the term

J1(b) ≡ v · v̄
∫ 0

−σ

dt1
∫ 0

−σ

dt2D (t1v − t2v̄ + b) , (40)

with v2 = v̄2 = −v · v̄ (see Fig. 3).
Setting b = 0 and using the expression for the cut

propagator as given by (10), we obtain

J1(0) = − 1
4π2

(−πµ′2L2
1
)(2−D/2)

(41)

× Γ

(
D

2
− 1
)

1
D − 3

1
4−D

[
1− (24−D − 1)

]
,

which actually coincides with what one would obtain if
the regular propagator was substituted. The significance
of this occurrence is that it leads to the same anomalous
dimensions for the running of the real-gluon contribution
to the cross-section as for the virtual part. This fact can
be immediately verified via a direct comparison with (15).

Isolating the finite part of the above expression, we
write

J
(a),fin
1 = − 1

8π2 ln
(
µ′2

λ2

)
. (42)

It is trivial to see that the same result holds also for
J

(a),fin
2 .
We next turn our attention to the term

J3(b) ≡ v · v̄′
∫ 0

−σ

dt1
∫ σ

0
dt2D (t1v − t2v̄

′ + b) . (43)

Its computation will concurrently allow us to determine
J4(b), which corresponds to the exchange prime ↔ no-
prime in the expression above.

Dimensionally regularizing the cut propagator, we then
obtain

J3(0) =
1
4π2 (−πµ′2)(4−D)/2Γ

(
D

2
− 1
)
v · v̄′ (44)

×
∫ σ

0
dt1
∫ σ

0
dt2
(
t21v

2 + t22v̄
′2 + 2v · v̄′t1t2 − i0+

)1−D/2
.

Once again we record, by referring to (17), coincidence of
the singularities and, by extension, of associated anoma-
lous dimensions between virtual- and real-gluon expres-
sions that contribute to the cross-section.

For the “uniformly soft” configuration the correspond-
ing result is

J
(a)
3 (0) =

1
4π2

(
−πµ

′2

λ2

)(4−D)/2

× Γ

(
D

2
− 1
)
v · v̄′

|v||v̄′| (45)

×
∫ 1

0
dt1
∫ 1

0
dt2

(
t21 + t22 + 2t1t2

v · v̄′

|v||v̄′| − i0+

)1−D/2

.

Taking into consideration that

v · v̄′

|v||v̄′| =
v′ · v̄
|v′||v̄| = cosh γ > 0,
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we obtain

J
(a)
3 (0) = J

(a)
4 (0) =

1
4π2

(
−πµ

′2

λ2

)(4−D)/2

× Γ

(
D

2
− 1
)
cosh γ (46)

×
∫ 1

0
dt1
∫ 1

0
dt2
(
t21 + t22 + 2t1t2 cosh γ − i0+

)1−D/2
,

whose finite part reads

J
(a),fin
3 (0) = J

(a),fin
4 (0) =

1
8π2 γ coth γ ln

(
µ′2

λ2

)
. (47)

Turning now our attention to the “jet” configuration,
we can actually go directly to J

(b)
3 (0), since J (b)

1 (0) +
J

(b)
2 (0) furnishes half of the contribution of its uniformly
soft counterpart, the reason being the same as the one
given in the virtual-gluon case. We thus have

J
(b)
3 (0) =

1
4π2

(−πµ′2)(4−D)/2
Γ

(
D

2
− 1
)
v · v̄′

|v| (48)

×
∫ 1

0
dt1
∫ 1

0
dt2

(
t21 + 2t1t2

v · v̄′

|v| − i0+

)1−D/2

,

with an analogous expression holding also for J (b)
4 (0).

For the finite parts of the “jet” contribution, one ob-
tains

J
(b),fin
1 (0) + J

(b),fin
2 (0) + 4

[
J

(b),fin
3 (0) + J

(b),fin
4 (0)

]
=

1
4π2 ln

2
(
µ′2

λ2

)
− 1

8π2 ln
(
µ′2

λ2

)
. (49)

Collecting our findings from the real-gluon analysis to
the second-order level, we write for the finite contribution
to the cross-section

U
(2)
CC̄,S = 1 +

αs

π
CF

[
(γ coth γ − 1) ln

(
µ′2

λ2

)

− 1
2
ln
(
µ′2

λ2

)
+ ln2

(
µ′2

λ2

)]
, (50)

At the same time, the singularity structure of the full
expression for the cross-section entails a multiplicative
renormalization factor, which is common to all “Wilson
loop” configurations entering its description, but which is
the only one that pertains to the family of eikonal-type
paths under consideration. The reasoning is, of course,
identical to the one given for the virtual-gluon case. There-
fore, the corresponding contribution to the cross-section
factorizes and the same resummation procedure can be
employed as for the virtual-gluon case. As already ob-
served, the anomalous dimension is in both cases the same.
There are, however, the following notable differences.
First, the upper limit for the momentum of real-gluon
emission is 1/b2 instead of Q2. Second, there is a differ-
ence of sign, which becomes evident by comparing (25)

with (50). Finally, no hard real-gluon emission enters our
considerations – by definition. In this light, it is practically
self-evident that the resummed expression for real-gluon
emission becomes

UCC̄ = exp

{∫ c/b2

λ̄2

dt
t

(51)

×
[
ln
Q2

t
Γcusp (αs(t))− Γ (αs(t))

]}
UCC̄,0,

where c = 4e−2γE corresponds to the canonical choice [24].
We can now bring together real- and virtual-gluon re-

sults by referring to our generic expression for the cross-
section as given by (7). First, we write

W =
〈
Tr
(
U†(C̄z′

)U(Cz)
)〉

= UC,cuspUC̄,cuspUCC̄,cuspŴ +O
(

1
Q2

)
, (52)

where the factor Ŵ contains both hard and residual soft
contributions.

Then, at the cross-section level, our threshold resum-
mation of the virtual gluons reads

UCUC̄ = exp

{
−
∫ Q2

λ̄2

dt
t

(53)

×
[
ln
Q2

t
Γcusp(αs(t))− Γ (αs(t))

]}
UC,0UC̄,0.

Thus, combining the above expressions, the final result
reads

W = exp

{
−
∫ Q2

c/b2

dt
t

×
[
ln
Q2

t
Γcusp(αs(t))− Γ (αs(t))

]}
W0, (54)

with Γcusp and Γ given by (30) and (36), respectively, an
expression obtained before in [21], employing Wilson lines
as a quantity attached to quark current operators.

6 Concluding remarks

In this paper we have applied first-quantization techniques
to study threshold resummation of soft gluon radiation for
DY-type of processes in QCD. We have addressed our ef-
forts in an energy regime whose lower cutoff is high enough
to justify an analysis in which reference to “gluons”, as
dynamical degrees of freedom, continues to make sense5.

5 We have implicitly assumed the pre-confinement property,
originally articulated in the first work of reference [25] (see
also the second one), according to which the non-perturbative
dynamics responsible for confinement screens color up to the
infrared scale λ which sets the lower limit for the perturbative
regime
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First-quantization approaches to the study of relativis-
tic quantum systems, involving either strings or world-
line agents as their basic tools, have been employed by a
number of authors during the last decade (the interested
reader is recommended to the recent reviews [9,13]) as a
viable alternative to the traditional second-quantization
procedure, associated with their field theoretical casting.
The main feature of this type of approach at the per-
turbative level is that it allows a space-time description
of the field theoretical system leading to expressions that
accommodate a host of Feynman diagrams at once. On
the other hand, it can play a crucial role in the study of
non-perturbative effects [9].

The chief issues of the present methodology can be
summarized as follows.
(1) The formalism is based on the Polyakov world-line
path integral, whose particular merit is that it is struc-
tured in terms of the spin factor, a quantity which is path-
determined and which accounts geometrically for the spin
of the propagating particle entity. Within this framework,
the quark–gluon dynamics is embodied in the expectation
value of open/closed Wilson lines. Thus, quantities of in-
terest for us, such as amplitudes or cross-sections, can be
solely described in terms of appropriately weighted inte-
grals over Wilson contours.
(2) We have based our considerations on the large scale
Q2 in order to apply the mathematically well-founded fact
that the local characteristics (like endpoints, cusps, etc.) of
the contours involved in the path integral can be dissected
out (cf. (52)). In this way we calculated the resummed
expression for soft-gluon emission that gives rise to the
Sudakov factor.
(3) We reiterate that our primary goal has not been to re-
produce known results, but to show how to obtain them on
the cross-section level using the world-line Polyakov path
integral. It is obvious that this type of approach can be
used to describe DIS-type processes as well (see [26] from
which the present investigation partly derives). Further-
more, since we are not obliged to use special type of paths
and we can always stay within the Euclidean formulation
– at least as long as we care about the leading behavior
of quantities like the cross-section, the present investiga-
tion may pave the way to extend this type of approach
to the large transverse distance regime, where we shall
meet power corrections signaling non-perturbative contri-
butions [21,24,27–30]. Thus, we hope that this formalism
can be extended to the calculation of the non-perturbative
effects of the expectation value of Wilson loops by having
recourse to the extensive existing literature [9,31] on the
subject.

Appendix

Our task is to establish (19) in the text. Performing the
integration entering the right hand side of (18), one ob-
tains

I
(a)
3 =

1
4π2

(−πµ2)(4−D)/2
Γ

(
D

2
− 1
)

1
4−D

1
D − 3

2w

×
{
wF

(
1,
D

2
− 1;

D − 1
2

; 1− w2
)

(A.1)

+
1
2
[2(1− w)]2−D/2

F

(
1,
D

2
− 1;

D − 1
2

;
1 + w

2

)}
.

Setting D = 4, we obtain

F
(
1, 1; 3/2; 1− w2) = γ

sinh γ cosh γ
(A.2)

and

F

(
1, 1; 3/2;

1 + w

2

)
=

γ

sinh γ
− i

π

sinh γ
. (A.3)

As the imaginary part in the above expression will cancel
against its counterpart in the conjugate expression, it can
be dropped as far as the cross-section is concerned.

Denoting the expression inside the curly brackets on
the r.h.s. of (A.1) by fD(w) and setting

fD(w) = f4(w) + (4−D)
fD(w)− f4(w)

4−D
, (A.4)

we realize that the second term on the r.h.s. will lead to
finite terms that depend solely on w and which will can-
cel against similar contributions of the same sort coming
from the other terms entering (12). Putting everything
together, one finally arrives at (19).

To establish the result given by (22), we first note that
(21) gives

I
(b)
3 =

1
4π2

(
−πµ

2

λ2

)(4−D)/2

× Γ

(
D

2
− 1
)

1
(4−D)2

(
2v · v′

|v|2
)(4−D)/2

×
[
F

(
D

2
− 1, 2− D

2
; 3− D

2
;−2v · v′

|v|2
)

+
(
1 +

2v · v′

|v|2
)2−D/2

−
(
2v · v′

|v|2
)2−D/2

]
. (A.5)

Then, in the limit D → 4 one easily retrieves (22).
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